Альфа-Банк

Применение нейронных сетей на многомерных временных данных для решения классических банковских задач

deep learningalfaBig Data

Привет!

В хабе центра продвинутой аналитики Альфа-Банка вы узнаете, как при помощи нейронных сетей можно значительно улучшить метрики в классических банковские задачах: кредитный скоринг, склонность к продуктам и предсказание оттока.

В банках нативным образом собираются огромные массивы данных по транзакциям, кредитным историям, коммуникациям с клиентами и логам из мобильного приложения. Каждый источник — это многомерный временной содержащий до 10000 элементов последовательности, а каждый элемент до 100 признаков. Архитектуры нейронных сетей позволяют выжимать из этих данных максимум за счет обработки в сыром виде.

Из цикла видео вы узнаете об источниках данных, архитектурах нейронных сетей и приемах для их обучения и устройстве нашего продакшна. По окончанию трека вы сможете применить новые знания в решении двух задач на реальных данных с совокупным призовым фондом 600 000 рублей.

Jobs