Применение нейронных сетей на многомерных временных данных для решения классических банковских задач
Deep LearningBig DataFinance
Привет! В треке Лаборатории машинного обучения вы узнаете, как при помощи нейронных сетей можно значительно улучшить метрики в классических банковские задачах: кредитный скоринг, склонность к продуктам и предсказание оттока. В банках нативным образом собираются огромные массивы данных по транзакциям, кредитным историям, коммуникациям с клиентами и логам из мобильного приложения. Каждый источник — это многомерный временной содержащий до 10000 элементов последовательности, а каждый элемент до 100 признаков. Архитектуры нейронных сетей позволяют выжимать из этих данных максимум за счет обработки в сыром виде. Из цикла видео вы узнаете об источниках данных, архитектурах нейронных сетей и приемах для их обучения и устройстве нашего продакшна. По окончанию трека вы сможете применить новые знания в решении двух задач на реальных данных с совокупным призовым фондом 600 000 рублей.
Our website uses cookies, including web analytics services. By using the website, you consent to the processing of personal data using cookies. You can find out more about the processing of personal data in the Privacy policy