Ended 13 months ago

MLOps и production в DS исследованиях 3.0

Современные подходы и инструменты для исследований на данных, разработки и внедрения ML-решений в production.

GitLabSnakeMakeMLFlowDVCCI/CDDockerCLInexuscodestyle

18 марта — 17 июня 

  • Познакомитесь с концепцией воспроизводимых исследований; 
  • Научитесь автоматизировать процесс проведения стандартизированных исследований;
  • Узнаете о методах организации командной работы над ML-проектами;
  • Получите практические рекомендации по работе с кодом в DS исследованиях;
  • Изучите полезные инструменты для автоматизации и обеспечения воспроизводимости исследований.

Ресурсы курса:

  • Презентации по лекциям курса: клик
  • Таблица для формирования команд участников: клик
  • Заполнение формы для прохождения курса в команде: клик
  • Таблица с темами для митапов: клик

Необходимые навыки:

  • Python;
  • Основы машинного обучения;
  • Опыт работы с общим кодом в команде (желательно).

Кому будет полезен курс?

  • ML-инженеры
  • Аналитики и инженеры данных
  • Менеджеры AI-продуктов и руководители (тимлиды) ML-команд
  • СTO / CIO 

Состав и расписание курса

На курсе вас ждут 14 занятий в записи, продолжительностью 1 - 2 часа по понедельникам. 
Консультационные встречи с лекторами, митапы с участниками.
Все занятия и встречи будут доступны в записи
 

Участников ждут практические домашние задания, тесты,  финальный проект, а также дополнительные активности и митапы, которые будут предлагаться участникам по ходу курса.

Курс можно проходить в индивидуальном порядке и в команде (не более трех участников)


Для дополнительной мотивации будет вестись публичный рейтинг, лучшие участники получат уникальный мерч от ODS.

Как набрать баллы рейтинга?

  • проходить тесты/выполнять задания 
  • выполнить и представить финальный проект 
  • выступить на митапе по теме, связанной с курсом 

Рейтинг будет доступен после закрытия дэдлайна по заданиям первой недели

Программа курса:

Блок1

  • Введение о курсе + интро (теория)
  • Что такое исследование Что должно быть в исследовании, как документировать исследование (теория, мини-тест)
  • Концепция воспроизводимых и масштабируемых исследований (теория, мини-тест)
  • Процессы работы команд (теория + практика, опционально)

Блок 2

  • Хранение и версионирование кода. Gitlab. Общие принципы Git-flow, Github-flow, настройка репозитория, codereview (теория + практика)
  • Codestyle, инструменты форматирования, линтеры. прекоммиты (теория + практика)

Блок 3

  • Управления пакетами Python: Хронология
  • Управление пакетами Python: Сравнение инструментов
  • Введение в Docker
  • Docker - практика

Блок 4

  • Шаблонизация. Python пакеты и CLI. Управление зависимостями (теория + практика)
  • Инструменты документирования исследований (Quarto, Sphinx, Gitlab Pages) (теория + практика)

Блок 5

  • Инструменты автоматизации исследований. Snakemake (теория + практика)
  • Инструменты автоматизации исследований. Hydra (теория + практика)

Блок 6

  • Инструменты автоматизации исследований. DVC (теория + практика)
  • Инструменты автоматизации исследований. LakeFS (теория + практика)

Блок 7

  • Инструменты трекинга исследований. MLflow (теория + практика)
  • ClearML(теория + практика)

Блок 8

  • Методы и инструменты тестирования кода, Hypothesis (теория + практика)
  • Методы и инструменты тестирования данных, Great Expectations (теория + практика)

Блок 9

  • Контейнеризация Docker. Разработка простого сервиса на базе ML моделей с FastAPI (теория + практика)
  • Разработка продвинутого сервиса на базе ML моделей с очередями. Celery-Redis, RabbitMQ(теория + практика)

Блок 10

  • Сервис на Streamlit (теория + практика, опционально)
  • CD, registry моделей. GitLab, Nexus/Artifactory (теория + практика)

Блок 11

  • Управление контейнерами. Kubernetes, OSCP, Red Hat OKD, DeckHouse (теория + практика)

Блок 12

  • FeatureStore: Feast, Feathr, Feature Form (теория + практика, опционально)

Блок 13

  • Мониторинг и аналитика ML моделей. Концепция дрейфа. Метрики (теория)
  • Мониторинг и аналитика ML моделей. Grafana, Prometheus, Evidently AI (практика)

Блок 14

  • Оркестрация процессов. AirFlow (теория + практика)
  • KubeFlow (теория + практика)

Менторы

Track program

Our website uses cookies, including web analytics services. By using the website, you consent to the processing of personal data using cookies. You can find out more about the processing of personal data in the Privacy policy