Предлагаем научиться делать fine-tuning трансформеров для задачи metric learning, сделать работающий demo-проект с использованием векторного поискового движка Qdrant и внести вклад в open source.
Qdrant - поисковый движок для эмбеддингов.
Он решает задачу хранения, обновления и быстрого поиска векторных представлений объектов (эмбеддингов).
Разворачивается в виде REST API сервиса по подобию ElasticSearch.
Необходимость работать с эмбеддингами возникает при разработке приложений, связанных с семантическим поиском, поиском похожих изображений. А также при использовании similarity(metric) learning подходов в, например, рекомендациях.
Для решения многих задач в NLP и не только хорошо подходят pre-trained трансформеры. Их можно использовать для задачи классификации, генерации текста, ответа на вопросы и, например, определения “логичности” высказываний.
Однако практически нету подробных туториалов и примеров по дообучению трансформеров для задачи semantic similarity, когда модель должна генерировать семантические эмбеддинги, которые можно использовать для определения похожести объектов.
Возникает естественное желание это исправить и показать на примере показать, что similarity learning - это естественный следующий шаг после обычных классификаторов, который может быть применен в production.
Участникам будет предоставлен пример работающего демо-приложения, использующего out-of-the-box модель, над улучшением качества которого также можно поработать.
Цель проекта - не получить наилучшую точность, а выработать best-practices по дообучению и использованию metric learning моделей.
Cookies help us deliver our services. By using our services, you agree to our use of cookies.