Senior Data Scientist (Deep Learning)

Posted:
Remote or office
Full-time

MLDLDeep LearningData ScientistFashion AI

Brief description of the vacancy

Lamoda Tech в поиске Data Scientist в AI Stylist. Наша цель – с помощью машинного обучения предоставить клиентам персонализированные визуальные решения по стилю, сочетанию вещей.

About the company

Lamoda Tech — IT-компания, в которой работает более 600 человек. Это разработчики, QA-инженеры, аналитики, DevOps, продуктовые менеджеры, архитекторы, дизайнеры, DS- и DE-специалисты, которые создают и развивают digital-продукты для fashion & e-commerce индустрий в России и СНГ.

Наши системы помогают быстро и гибко совершенствовать онлайн-платформу, автоматизировать финансовые и операционные процессы, работу двух складов и контакт-центров, фотостудии и службы доставки. Для этого (и не только) мы развиваем продуктовую культуру, используем микросервисную event-driven архитектуру, разрабатываем внутренний Go-инструментарий и создаем data-driven продукт.

Мы делаем цифровую революцию в fashion & e-commerce. Ищем тех, кто готов менять индустрию вместе с нами.

Responsibilities

  • Улучшать модели подбора комплектов товаров (образов) на основе визуальной сочетаемости по фотографии, генерация комплектов на основе текстового запроса пользователя;
  • Обогащать атрибуты товаров: извлечение атрибутов из фотографий товаров, отзывов, генерация описаний с помощью нейронных сетей;
  • Развивать визуальный поиск: разрабатывать алгоритмы детекции предметов одежды на фотографии, поиска по ассортименту актуальных товаров;
  • Обучать LLM, разбирающуюся в моде и стиле, которая способна поддерживать диалог, давать советы и помогать в навигации по товарам на Lamoda;
  • Виртуальная примерка: примерка вещей из ассортимента Lamoda на основе фотографии клиента.

Стэк технологий: Big data (Hadoop, PySpark, Hive), Python, Catboost, Airflow, Docker, SQL, PyTorch.

Requirements

  • Опыт в области анализа данных и машинного обучения (от 2 лет);
  • Опыт работы с SQL, Hadoop, Hive, Spark;
  • Владение Python, Linux, методами работы с большими данными;
  • Опыт применения Deep Learning в задачах Computer Vision, NLP;
  • Опыт работы с фреймворками глубокого обучения (мы используем PyTorch);
  • Знания теории вероятностей и математической статистики; машинного обучения, прогнозного моделирования и методов статистического анализа; алгоритмов и структур данных;
  • Высшее образование в области прикладной математики, информационных технологий, информатики и т.п;
  • Английский язык на уровне технического чтения.

Как мы работаем:

  • Пишем на Python 3.6+ и PySpark 3.0;
  • Для ресерча доступны два сервера (80 cores, 650Gb RAM), на которых развернут JupyrerHub и есть доступ к Hadoop-кластеру;
  • Код с логикой ML-пайплайнов упаковываем в Docker и выкатываем, используя CI/CD-инструменты с запуском code style проверок и тестов;
  • Используем Airflow для управления ML-пайплайнами и запуском их по расписанию;
  • В командах есть культура code review как для изменений по части продакшен-пайплайнов, так и для ресерч-задач;
  • Регулярно проводим командные брейнштормы с целью генерации новых идей по развитию наших data-driven продуктов;
  • В компании внедрена культура принятия решений на основании данных и все изменения тестируем через a/b эксперименты.

Working conditions

  • Гибридный или удаленный формат работы на выбор
  • ДМС со стоматологией и страхование путешествий
  • Скидка на каталог Lamoda от 15% до 40%
  • Компенсируем 15 дней больничного, чтобы не терять в зарплате

Почему у нас классно:

  • Хорошо выстроенные процессы: квартальное планирование по методологии OKR, двухнедельные спринты, регулярные стендапы и проектные встречи для синхронизации.
  • Сильная команда middle и senior специалистов, развитое DS-сообщество, где есть возможность обмениваться знаниями на внутренних митапах
  • У нас представлен полный жизненный цикл разработки data-driven продуктов с применением ML — от идеи и генерации гипотез до запуска АБ тестов. В части разработки онлайн-сервисов и деплоя моделей нам помогает команда инженеров.

Contacts

Log InOnly registered users can open employer contacts.

Cookies help us deliver our services. By using our services, you agree to our use of cookies.